Endocannabinoids Mediate Neuron-Astrocyte Communication

نویسندگان

  • Marta Navarrete
  • Alfonso Araque
چکیده

Cannabinoid receptors play key roles in brain function, and cannabinoid effects in brain physiology and drug-related behavior are thought to be mediated by receptors present in neurons. Neuron-astrocyte communication relies on the expression by astrocytes of neurotransmitter receptors. Yet, the expression of cannabinoid receptors by astrocytes in situ and their involvement in the neuron-astrocyte communication remain largely unknown. We show that hippocampal astrocytes express CB1 receptors that upon activation lead to phospholipase C-dependent Ca2+ mobilization from internal stores. These receptors are activated by endocannabinoids released by neurons, increasing astrocyte Ca2+ levels, which stimulate glutamate release that activates NMDA receptors in pyramidal neurons. These results demonstrate the existence of endocannabinoid-mediated neuron-astrocyte communication, revealing that astrocytes are targets of cannabinoids and might therefore participate in the physiology of cannabinoid-related addiction. They also reveal the existence of an endocannabinoid-glutamate signaling pathway where astrocytes serve as a bridge for nonsynaptic interneuronal communication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endocannabinoids Potentiate Synaptic Transmission through Stimulation of Astrocytes

Endocannabinoids and their receptor CB1 play key roles in brain function. Astrocytes express CB1Rs that are activated by endocannabinoids released by neurons. However, the consequences of the endocannabinoid-mediated neuron-astrocyte signaling on synaptic transmission are unknown. We show that endocannabinoids released by hippocampal pyramidal neurons increase the probability of transmitter rel...

متن کامل

Endocannabinoids Induce Lateral Long-Term Potentiation of Transmitter Release by Stimulation of Gliotransmission.

Endocannabinoids (eCBs) play key roles in brain function, acting as modulatory signals in synaptic transmission and plasticity. They are recognized as retrograde messengers that mediate long-term synaptic depression (LTD), but their ability to induce long-term potentiation (LTP) is poorly known. We show that eCBs induce the long-term enhancement of transmitter release at single hippocampal syna...

متن کامل

Neuron to Astrocyte Communication via Cannabinoid Receptors Is Necessary for Sustained Epileptiform Activity in Rat Hippocampus

Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of a...

متن کامل

Not Too Excited? Thank Your Endocannabinoids

Endocannabinoids can mediate neuroprotection, but it is not known how. In this issue of Neuron, Monory et al. use mutant mice and localized viral targeting to produce conditional knockouts of the cannabinoid CB1 receptor. They show that protection against kainic acid-induced seizures and cell death is conferred by CB1Rs on hippocampal glutamatergic nerve terminals.

متن کامل

Endocannabinoids Mediate Synaptic Plasticity at Mixed Synapses

Endocannabinoids are generally known to suppress excitatory or inhibitory synaptic transmission. Now, in an elegant series of experiments, Cachope et al. reveal a novel signaling pathway whereby endocannabinoids indirectly potentiate mixed chemical and electrical synapses. Gap junction-mediated transmission can thus be potentiated via distinct frequency-dependent mechanisms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2008